NON-INVASIVE SSL PAYLOAD PROCESSING FOR IP PACKET
USING STREAMING SSL PARSING

Field of the Invention

This invention relates to the field of data transfer in a network environment
10 and more specifically to non-invasive SSL payload processing for IP Packets

using streaming SSL parsing.

Background of the Invention

The Internet, as well as other networking architectures such as local area
i5 networks and wide area networks, allows for different types of computers to
communicate with each other. This interoperability is achieved through the use of
certain Internet protocols, one such being the TCP/IP protocol. IP or Internet
Protocol is designed to provide end to end datagram service between networks.
An IP datagram, or packet, comprises a header portion and a data portion. The
20 header portion includes information such as the source of the packet and the

destination of the packet. The data portion includes the data being transferred

from computer to computer. Due to size limitations of the data portion, typically a

message sent from computer to computer utilizes several packets. TCP is a
protocol that is responsible for verifying the correct delivery of data from client to

25 server. TCP adds support to detect errors or lost data and to trigger retransmission
until the data is correctly and completely received.

As the use of the Internet for such purposes as e-commerce increases, so
does the need for secure transactions. The most common way to protect data that
is transmitted over the Internet is with the secured socket layer (SSL) protocol.

30 The secured socket layer protocol operates above the TCP/IP layer and below
application layer protocols such as HTTP. SSL makes use of TCP to provide a

viable end-to-end secure service. SSL allows for server authentication. Server




10

15

20

25

30

authentication involves a user’s ability to confirm a server's identity. A client with
SSL enabled software is able to check a server's authentication certificate and
public I.D. for validity to confirm the identity of the server. SSL also allows for
optional client authentication. Client authentication allows a server to authenticate
a client’s identity. Client authentication is often used in secured banking situations
where the bank (the server) needs to insure it is communicating with a customer
(client). SSL also allows for a secured connection to exist between a client and a
server. The secured connection requires all information sent between a client and
server be encrypted by the sending software and decrypted by the receiving
software thus providing a high degree of confidentiality.

The SSL protocol includes two subprotocols. These are the SSL record
protocol and the SSL handshake protocol. The SSL record protocol defines a
format to transmit data. The SSL handshake protocol involves initially setting up
the SSL connection to determine certain parameters to be used during the SSL
communication. The initial SSL communications in the SSL handshake protocol
is used to authenticate the server to the client, allow the client and the server to
select what cryptographic algorithm or ciphering to support, optionally
authenticate the client to the server, and use public key encryption techniques to
generate shared secrets and establish a secured connection.

During the handshake phase, the client first sends a server the client's SSL
version number session ID, its cryptographic settings, randomly generated data,
and other information a server needs to communicate with the client. The server
then sends the client the server's SSL version number, cipher settings, randomly
generated data and other information the client needs to communicate with the
server. At this time the server sends its authentication certificate and, optionally,
requests the client's certificate. In the third step the client will authenticate the
server. Then using the data generated to that point, the client creates a premaster
secret for the session, encrypts the premaster secret using the server's public key,
which is sent with the server certificate, and sends the encrypted premaster secret

to the server. The server uses its private key to decrypt the premaster secret and




10

15

20

25

30

then performs a series of steps on the premaster secret to generate a master secret.
The client also performs its own permutations on the premaster secret to generate
the master secret. Then the client and server use the master secret to generate
session keys that will be the keys used to encrypt and decrypt information
exchanged during that SSL session, as well as to verify the integrity of the
information sent. After indicating that all further messages will be encrypted, the
SSL handshake is finished and the SSL session is begun.

One drawback to the SSL protocol is that it requires a large amount of
computation at the web server to receive and decrypt the encrypted text. Also,
because the SSL traffic is routed directly to the web server in an encrypted format
it makes use of devices such as network monitoring devices possible. To address
this problem, SSL proxies have been introduced. An SSL proxy is a device that is
deployed on a computer network behind a router on the server side and receives
the network traffic. Non-SSL traffic is passed through to the web server. For SSL
traffic, the SSL proxy will perform the SSL handshake and initiate the SSL
session with the client. The SSL proxy then receives the SSL message records,
places them in order, strips out the encrypted message, decrypts the message and
forms new packets with new packet headers and packet records. The packets are
then output to the web server using a second connection. The disassembly and re-
assembly of SSL message into a new packet before sending it on is time
consuming, inefficient, and resource intensive. It requires two network
connections; one between the client and proxy and a second one between the
proxy and the server. What is needed is a more efficient way to process SSL

proxy traffic.

Brief Description of the Drawings

For a more complete understanding of the present invention and the
advantages thereof, reference is made to the following descriptions taken in
conjunction with the following figures, in which like reference numerals represent

like parts and in which:




10

15

20

25

30

FIGURE 1 is a schematic diagram of a system for decrypting packets;
FIGURE 2 is a flowchart outlining a buffered implantation;

FIGURE 3 is a flowchart outlining the streaming embodiment; and
FIGURE 4 is a flowchart outlining yet another embodiment.

Detailed Description of the Drawings

FIGURE 1 illustrates a system for streaming SSL traffic. Illustrated is a
client computer 102 coupled to a SSL proxy 104 that in turn is coupled to a web
server 106. The end-to-end connection between client computer 102 and the web
server 106 represents a single TCP connection. This means that packets from the
client computer 102 are addressed to the server computer 106 and not the SSL
proxy 104. SSL proxy 104 includes a database 108 for storing information
concerning the session and the connection. The first communication line 103
between the client computer 102 and SSL proxy 104 is the portion that is the SSL
connection with encrypted text. The second communication line 105 between
SSL proxy 104 and web server 106 is the portion that is a plain text connection
where the text transmitted is unencrypted.

Client computer 102 can be any computer capable of accessing web server
106 such as a personal, home or office computer using a web browsing program
capable of supporting SSL, such as Internet Explorer 4.0, by Microsoft, of
Redmond Washington. Although only one client computer 102 is shown in
FIGURE 1, there can be any number of client computers 102 connected to SSL
proxy 104. The capacity is limited only by the SSL proxy's ability to handle
simultaneous incoming traffic.

SSL proxy 104 is a device that is deployed before the server computer 106
to handle SSL traffic. In one embodiment SSL proxy 104 may be a computer.
SSL proxy 104 is operable to receive encrypted packets, hold the packets until all
packets are received, decrypt the record fragment in each of the packets, compute
the necessary authentication code to verify the authenticity of the message, and

forward the record payload in the original packets to the server computer 106. In

4




10

15

20

25

another embodiment packets could be unencrypted as the packets are received
with buffering only used for packets received out of order. SSL proxy 104
includes a database 108 that includes a session table associated with each SSL
session. Session table includes the master secret, the SSL transformation
information, i.e., the type of coding to be used and the source address and
destination address. There is also an optional subtable called a connection table
that includes such information as the source and destination port number, the
message authentication codes, the initialization vector, the sequence number, the
acknowledgement number and other information for the TCP connection.

Web server 106, in one embodiment, is a computer operable to run a web
server program and answer and supply information to a client computer 102. Web
server 106 receives the unencrypted packets from web proxy 104 and sends
unencrypted responses to SSL proxy 104, which encrypts the server traffic enroute
to the client 102. Web server 106 may be an actual web server, an application
server such as a TCP-based application server, or a virtual construct such as a load
balancer, cache appliance, or traffic manager.

In operation, client computer 102 initiates an SSL session with SSL proxy
104. All the initial SSL handshaking will be done between the client computer
102 and the SSL proxy 104. SSL proxy 104 will typically have a copy of the
server's authentication certificate already stored. Therefore, all steps necessary for
an SSL handshake will be completed and the information necessary to complete
the transaction will be stored in database 108.

Upon handshake, certain tables of information are established and stored
in database 108. These include the session table and the connection table. The
session table tracks a particular client to server communication while a connection
is in a particular conversation. There can be many connections under one session.
Table I illustrates an example of a session table along with the information
tracked, when the information is established and a description of what is being

tracked.




Parameter Established Description

Session ID At handshake Unique ID for session

Encryption Algorithm At handshake Highest encryption
scheme mutually
supported

MAC Algorithm At handshake Highest encryption
for message
authentication code

Source address At handshake IP address of source

Destination address At handshake IP address of message
destination

Master secret At handshake Data used to generate
master secret

Session expiration At handshake Sets how long session

lasts before new one
needs to be reestablished
Client certificate At handshake Authentication certificate
of client to prove client
identity

An exemplary connection table is shown as Table II.

5
Parameter Established Description
Source port At connection Port or computer where
connection starts
Session ID From session Unique ID for a session
table
Destination port From session Port of destination
table computer
Server key Calculated at Servers decryption
Server MAC key Calculated Server’s key to decrypt
MAC
Client key Calculated Clients public key
Client MAC_key Calculated Clients MAC key
Server IV Calculated Server Initialization
Vector
Client IV Calculated Client Initialization
Vector




15

20

Sequence number Random (from Current packet number
packet)

ACK number Random (from Previous packet number
packet)

Window S2 Random (from Number of
packet) unacknowledged packets

MAC state Random (from Filled in as MAC
packet) calculated packet by

packet

A third table, the Queue State Table, can also be stored. Table III

illustrates an exemplary Queue State Table.

Parameter Description
Packet Data Info on packet in queue
Q_state “hold” or “ready”

After the handshaking is completed and encrypted keys are selected,
computer 102 will begin to send encrypted text to SSL proxy 104. SSL proxy 104
will then receive each packet. In a first embodiment, SSL proxy 104 will wait
until all packets are received and then, in order, decrypt the record of each packet,
verify its authenticity and send it along to server 106. In a second embodiment,
SSL proxy 104 will decrypt each packet as received, buffering those packets that
are received out of order. After each packet has been decrypted they are then sent
to server 106 via second communication line 105. Receipt of the last packet
allows authentication to compile. If it passes, the last packet is forwarded; if it
fails it is forwarded with a RST flag set (reset), forcing the receiver to discard the
record contents. Record size and MAC locations are traced through the gleaning
of the record size field in the record header. In the present invention, since
packets are not disassembled the proxy need not terminate the TCP session. Thus
the source and destination address of a packet from a client does not change.
Therefore only a single connection is needed between the client and the server.

7




10

15

20

25

30

FIGURE 2 is a flow chart illustrating the buffered version of the present
invention. In step 202, a SSL session is initialized and a packet is received. Then
in step 204, the header of the packet is read to determine if it is SSL traffic. Ifitis
not SSL traffic, in step 206 the packet is sent to its destination, typically a web
server.

If it is an SSL packet, the packet is held in a hold queue in step 208. In the
database 108, the connection table will hold a predetermined value, calculated
from the MSS (maximum segment size) or MTU (maximum transmission unit)
and the record length in the SSL record header, which indicates how many packets
to expect for a give record. This is read from the packet header and is stored in the
database 108. In step 210, the queue is checked to see if all the packets have
arrived. If not, more packets are received in step 202. Along with checking if the
packet sequence is completed, step 210 also tracks the window, another entry in
the connection database that tells how many packets can go unacknowledged
before the message originator stops sending packets. In step 210, as the number
of packets approaches the window count, they may be acknowledged by the
proxy.

Once all packets are received, they are outputted, in order, to decryption
stage 212, where the record payload is decrypted. In step 214, the message
authentication code is checked. If it checks invalid, all packets are discarded in
step 216. If they check valid, the decrypted packets are sent to their destination in
step 218.

FIGURE 3 is a flow chart illustrating an alternative embodiment of the
present invention. As before, in step 302, a session is initialized and a packet is
received. In step 304, the header of the packet is checked to see if it is SSL
traffic. Ifit is not, in step 306 it is sent to its destination.

If it is SSL traffic, in step 308 it is determined if it is the first packet or if it
is the next packet in order. This is done by examining the sequence number in the
header of the packet and the connection table. If it is the first or next packet in

order, the record of the packet is decrypted in step 316.




10

15

20

If it is not the first or next packet, it is placed in a hold queue in step 310.
The hold queue has a controller 312, which checks to see if the subsequent
packets received are ones that precede the packet in the hold queue. If all
preceding packets to the packet in the queue have arrived, a clear packet signal is
given in step 314 and the packet is sent from the hold queue to the decryption step
316. If the packet is not yet ready for release from the hold queue, it stays there
until it receives a clear signal.

In step 318, the packets are checked to see if the last packet has arrived. If
not, more packets are collected in step 302. If it is the last packet, the message
authentication code is verified in step 320. If it is not valid, all packets are
discarded in step 322. If the message authentication code is valid, the decrypted
packets are sent to their destination.

In yet another embodiment, depicted in FIGURE 4, the process is
performed without explicitly determining whether the packets are received in
order. Thus, the hold queue and associated processing steps are omitted from this
embodiment. Instead, the packets are processed as received using the MAC check
(STEP 320), since the MAC check inherently ensures that the sequencing was
correct.

While the invention has been particularly shown and described in the
foregoing detailed description, it will be understood by those skilled in the art that
various other changes in form and detail may be made without departing from the

spirit and scope of the invention.




	2001-06-08 Specification

